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It has been recently proved that lattice-gas models with Boolean particles can 
provide a very powerful method to  study viscous flows at moderate Reynolds and 
small Mach numbers (d’HumiBres, Pomeau & Lallemand 1985 ; Frisch, Hasslacher & 
Pomeau 1986; d’HumiBres & Lallemand 1986). We present here algorithms for an 
extension of these models to provide a simple and efficient way to simulate a large 
variety of flow problems with free boundaries. This is done by introducing two 
different types of particles that can react following a specific kinetic scheme based on 
autocatalytic reactions. I n  order to check the powerful character and the reliability 
of the method we also present preliminary results of two-dimensional computer 
simulations concerning problems ranging from the competition between molecular 
diffusion and turbulent mixing in flows presenting a Kelvin-Helmholtz instability 
to the spontaneous generation of turbulence in premixed flame fronts subject to 
the Darrieus-Landau instability. The dynamics of an interface developing a 
Rayleigh-Taylor instability is also considered as well as some typical problems of 
phase transition such as spinodal decomposition and the nucleation process. 

1. Introduction 
The behaviour of large assemblies of atoms or molecules is described by the laws 

of continuum mechanics (such as the Navier-Stokes equation for normal fluids) in 
which the discrete nature of the particles has been more or less forgotten. This 
remark has recently proved to be quite helpful in a proposal for a new method of 
numerical computation of the equations of fluid mechanics (d’HumiBres, Pomeau & 
Lallemand 1985 ; Frisch, Hasslacher & Pomeau 1986). It consists of representing 
explicitly in the computation a very simple microscopic world described by a lattice- 
gas model. This model, which is derived from a model studied earlier (Hardy & 
Pomeau 1972 ; Hardy, Pomeau & de Pazzis 1973 ; and Hardy, de Pazzis & Pomeau 
1976), presents the same properties as a normal fluid for large space and time scales. 
Moreover, because of its discrete character, the lattice-gas model can be handled by 
a deterministic cellular automaton which may proceed in a massively parallel way. 
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The preliminary results that  have been obtained on one-phase flows a t  moderate 
Reynolds numbers are very encouraging (d’Humi8res et al. 1985; d’Humi8res & 
Lallemand 1986). For the moment i t  is probably too early to judge the success of this 
new method compared to more classical ones improved by years of effort, although 
the advent of specialized highly parallel computers based on this idea may open new 
horizons, in particular from the point of view of computational speed. Among the 
advantages of this approach are the simplicity and the flexibility of the software. 

The purpose of this paper is to extend these ideas to the representation of 
situations in which the dynamics of interfaces are coupled to fluid motion. Typical 
examples are provided by molecular mixing and chemical reactions developing 
together in turbulent mixing layers, flames in premixed gas flows and two-phase 
flows with immiscible fluids or with equilibrium liquid-vapour interfaces. This is 
noteworthy for being a source of tough problems in computational fluid mechanics. 
Different possibilities will be presented for describing such interface dynamics with 
a similar simpified microscopic representation of the continuum. The general method 
consists in adding a label (such as A or B) to the fluid particles of the lattice gas. This 
label makes it possible to distinguish between the particles on either side of the 
interface but particles of a given family (A or B) remain indistinguishable. We shall 
introduce various models depending on whether or not the label has its own 
dynamics controlled by a chemical reaction, and whether or not the fluid motion is 
influenced by the dynamics of the interface. 

I n  each section of the paper, a discrete molecular model for a physical system with 
an interface will be presented and its elementary properties studied so as to make 
each section as self-contained as possible. Finally a practical implementation will be 
proposed and some preliminary results of computer gedanken experiments will also 
be presented. A brief description of the lattice-gas method is given in Appendix 
A. 

In  $2 it will be shown how to model the convection of a completely passive scalar. 
This corresponds, for instance, to mixing layers as often visualized by differential 
colouring of the two fluids. 

In  $ 3  we shall consider a model in which the labels have non-trivial dynamics 
leading to the spontaneous formation of thin interfaces. The labels (and thus the 
interface) are convected by the fluid, but the interface has no influence on the flow 
field. Each particle bears one of the two possible labels but, contrary to the model 
presented in $2, this label may change during the course of time. The microscopic 
laws controlling this ‘chemical reaction’ are such that particles with the same label 
tend to be together. The corresponding macroscopic effect leads to a stable phase 
separation with a thin interface between pools ofA and B which coexist forever when 
the equilibrium conditions for label transformation are satisfied by the microscopic 
laws. For other conditions, the growth of a stable phase into a metastable or an 
unstable one can be observed. These models could be helpful for studying nucleation 
phenomena or chemical reactions in flows. 

In  $ 3  we also present a model in which the two labels correspond to states of 
different internal energy of the fluid particles. Thus label transformations now are 
subject to a constraint of energy conservation. This constraint is satisfied by 
coupling the label change to the spin flipping of a dynamical Ising model with its own 
energy-conserving dynamics. Such a model is useful for crystal growth. 

I n  $ 4  we outline some of the problems related to  the representation of two-phase 
flows of immiscible or reacting fluids. At the microscopic level, phase separation in 
real immiscible fluids is related to the balance between repulsive and attractive 
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molecular forces. It is difficult to implement attractive forces in the discrete lattice 
gas. It may be noticed, however, that the equilibrium interface between two phases 
of a substance can be a fair representation of a passive interface between the two 
immiscible fluids, showing that immiscibility is not necessarily needed a t  the 
molecular level. This is the case for phases having the same mechanical properties as 
the two immiscible fluids whenever the flow-induced perturbations to the local 
thermodynamic equilibrium on both sides of the interface have a relatively negligible 
effect upon the motion of this interface. With this in mind, we discuss the conditions 
for which the interface models of $ 3  are reasonable approximations to describe front 
instabilities such as Rayleigh-Taylor or Kelvin-Helmholtz instabilities. In  fact, 
those interfaces behave as thin reaction-diffusion layers so that such models could be 
also helpful to study the development of chemical reactions in turbulent flows. 

Section 5 is devoted to the presentation of a microscopic model in which ‘ chemical 
reactions ’ act on the fluid motion because of temperature and density changes. This 
is useful for modelling premixed flames. In this model the labels correspond to 
different states of internal energy of the particles and conservation of energy in label- 
changing collisions is now ensured by exchanging kinetic energy ( = translational) 
and internal energy. This is made possible by particles having one of two possible 
non-zero moduli for their microscopic velocities. We shall also present preliminary 
results of a numerical simulation of this model in which plane flame fronts appear, 
followed by a time-dependent distortion of the fronts due to the growth of the 
hydrodynamic instability of Darrieus-Landau. 

2. Simple mixing of a passive scalar 
There are two ways to represent the behaviour of fluids : Eulerian and Lagrangian. 

In  the Lagrangian approach one follows the trajectories of particles convected by the 
fluid and it is possible to obtain a direct answer to questions related to dynamical 
mixing. To give an example of this, as well as a possible way to study it by lattice- 
gas dynamics, let us consider mixing in a free shear layer. This layer can be obtained 
experimentally by merging two parallel flows with different velocities. A Kelvin- 
Helmholtz instability develops and mixes the two fluids in a region of non- 
potential flow. This mixing phenomenon is basically non-diffusive (Roshko 1967) and 
can be understood as follows: a t  the molecular level the thickness of the interface 
between the two fluids grows as (Dt);, where D is the molecular diffusivity and t is the 
time elapsed since the merging of the two layers, t = z / u , z  being the streamwise 
distance to the merging point, and u the mean flow velocity. However, the typical 
length for the Kelvin-Helmholtz instability is z .  Thus for z > D / u  = z ,  all scales are 
presumably present in the interface geometry from z down to z,, so that the interface 
looks like a fractal with a small-scale cutoff a t  z,. 

To simulate this in lattice-gas computations, one could think of the following 
‘gedanken computer experiment’. Using a silicon wind tunnel such as the one 
presented by d’Humi8res (d’Humiitres et al. 1985 ; d’Humi8res & Lallemand 1986), 
inject particles of lattice gas with different flow velocities into two parallel jets with 
two different labels or ‘ colours ’. 

This requires, a t  most, to double the number of bits, since beyond knowing 
whether a particle is present with a given velocity one also needs to know the ‘ colour ’ 
of the particle. For example, fourteen bits can be used a t  each site of a hexagonal 
lattice: six bits show the presence or absence of a particle with a given orientation 
of the velocity (the modulus of the velocity is the same for all directions) ; one bit is 
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for the presence or the absence of a particle a t  rest; seven bits are used to show the 
‘ colour ’. 

In  the following, the first seven bits will be called the ‘hydrodynamic bits ’ and the 
seven others the ‘colour bits’. Among the 214 corresponding possibilities, only 37 
represent possible states of a given site. This is because a colour bit has a meaning 
only when the corresponding hydrodynamic state is occupied. The collisions laws are 
represented by a table of 37 elements determining the correspondence between states 
before and after collisions. It may be convenient to introduce more than one table, 
in particular to describe the possibility of collisions having different outlets for a 
given inlet. Two a t  least are required to ensure isotropy, see Appendix A. In  order 
to make the colour a truly passive marker in the sense of seeding in experimental 
tomography (Boyer 1980), these collision tables must be constructed in such a way 
that the mapping obtained when attention is restricted to the subset associated with 
the seven hydrodynamic bits corresponds to that given by the tables of Z7 elements 
used to describe the ordinary one-phase flow as in d’Humi8res et al. (1985), 
d’Humi8res & Lallemand (1986). When the total number of particles, momentum 
and energy are conserved in the collision rules for the hydrodynamic bits, it can be 
shown that the Navier-Stokes equations are verified a t  the macroscopic level (Frisch 
et al. 1986). The collision laws for the colour bits must be such that the number of 
particles of a given colour is conserved and care must be taken to maintain isotropy 
and detailed balance, The binary diffusion process and ‘random walk ’ are ensured by 
the coloured collisions and the validity of Fick’s law can be proved following 
developments similar to those of Frisch et al. (1986) and of Rivet & Frisch (1986). 
However it should be noticed that the hole-particle symmetry present in the original 
hexagonal model (Frisch et al. 1986) is lost when the colour of particles is 
considered. 

In  figure l (a ,b)  we present the values of the binary diffusion coefficient D of 
different values of the density as obtained by direct simulations of the lattice-gas 
algorithm. In these figures (as in the rest of this paper) every dimensionless quantity 
is expressed in the natural units of the lattice gas : the unit of length is the distance 
between sites and the unit of time is the corresponding transit time. Note, however, 
that the density d is expressed in particles per direction per site ; the mass density is 
thus given by p = 7 d .  These data have been obtained for two different configurations. 
The first series of experiments concern the amplitude relaxation of a sinusoidal 
perturbation in the mass fraction, as in forced Rayleigh diffusion experiments. The 
exponential decay and the dependence of the relaxation time on the square of the 
wavelength are found to be well verified, see figure 1 (c, d ) .  In  the second series of 
experiments, an initial Heaviside step function in the profile of the densities is 
allowed to evolve and is fitted with the corresponding error function. The values 
obtained in the two configurations are equal to within an accuracy of few percent and 
show that the product of the binary diffusion coefficient and the density is only 
weakly dependent on the density, as predicted by the kinetic theory of gases. 

This extension of the lattice-gas method is convenient to study phenomena in 
which molecular diffusion and turbulent mixing are present, as in the above- 
mentioned experiments concerning mixing layers. It is easy to imagine a computer 
experiment in which one does the same measurements as in real experiments: 
measure the mean colour in the mixed flow, track the interface and measure its 
length or area per unit volume, or eventually its fractal dimension. Lines of emission 
and particle paths can also be easily imaged by this method. The limitation of this 
model is the same as the one met when studying large-Reynolds-number flows. At 
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FIGURE 1. (a) Binary diffusion coefficient as a function of density. The crosses are obtained from 
the relaxation of a Heaviside step function, the triangles from an initial sinusoidal perturbation. 
( b )  Binary diffusion coefficient times density as a function of density. (c) Amplitude of an initial 
sinusoidal perturbation as a function of time; density = 0.9, A = 64. (d )  Wavenumber-squared 
dependence of the inverse relaxation time for sinusoidal perturbations; density = 0.8: -, 
calculations ; m, experiments. 
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(b)  

FIGURE 2. Turbulent mixing in a Kelvin-Helmholtz instability. (a) time = 2000, ( b )  4000 

low density the Schmidt number is of order unity for the lattice gas (it is easy to 
anticipate this by analogy with a real gas) and the dimensionless ratio z /z ,  is thus of 
the same order of magnitude as the Reynolds number. 

Some preliminary results of a computer simulation of the Kelvin-Helmholtz 
instability developing on a idealized mixing layer are presented in figure 2. A lattice 
gas of 1024 sites by 256 sites is used in a two-dimensional channel with stick 
conditions a t  the upper and lower boundaries and periodic conditions a t  the ends. 
The initial condition consists of two symmetric flow regions occupying the upper and 
lower halves of the channel. The two regions have opposed velocity vectors with the 
same modulus of $. This corresponds to  a Mach number of M z 0.65, a Reynolds 
number based on the width of the box of R e x  330 and a Schmidt number 
D l v  x 1.17. Molecular diffusion and turbulent mixing proceed as the time goes on to 
approach the complete equilibrium constituted by a quiescent medium with uniform 
species concentrations. The pictures after 2000 and 4000 times steps are presented in 
figure 2. Coherent structures are visualized here by isoconcentration lines. 

To study and visualize the dynamics of large structures as well to isolate the 
turbulent mixing mechanism, it could be interesting to suppress the molecular 
diffusion process between the two different coloured particles as for the interface 
between two immiscible fluids. This problem is presented in $4. 

3. Interfaces associated with reaction-diffusion waves developing in flows 
Equilibrium interfaces may appear between two steady stable states of a system 

of diffusive particles with autocatalytic reactions. The multiplicity of chemical 
equilibrium states and their possible coexistence result from the specific properties of 
the kinetic model (see (1) below) and this is not representative of ordinary chemical 
systems. By modifying the reaction rates it is also possible to describe the 
propagation of a near-equilibrium interface associated with the transformation of a 
metastable state into a stable one. The analogy with the thermodynamics of a first- 
order phase transition is shown in the equilibrium equations which are very similar 
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to the ones governing the spatial dependence of the order parameter in the theory of 
Cahn & Hilliard (1959). 

Consider a reacting mixture of particles A and B with the following kinetics: 

k i  
A+ A + B  $ A +  A+ A, 

k.i 

k t  
B + B + A $ B + B + B ,  

kB 

where kA,B(  > 0) are the constants of reaction. The corresponding reaction-diffusion 

ax 
at 

equation is 
- = D A X + W ( X ) ,  

where X is the mass fraction of A, D the binary diffusion coefficient and w the 
reaction rate : 

= k ~ x 2 ( i - x ) + k , ( i - ~ ) 3 - k . ~ x 3 - k ; : ~ ( 1 - ~ ) 2 .  (3) 
As a first example consider the symmetrical case: 

o is an odd function of ( X  -$). When K = k- /k+  < f, it has three real roots X , ,  X ,  and 
$, ( X ,  = 1 -XI, in this symmetrical case, 0 < < l) ,  collapsing to f for the critical 
case K = f. For K < $, the mass fractions X ,  and X ,  are those of the stable stationary 
(equilibrium) states. The stationary state X = t is unstable for K < but stable and 
unique otherwise. For non-zero values of K (  < $), both equilibrium states consist of a 
mixture of A and B with fluctuations in the concentration X .  For the particular case 
k- = 0 ( K  = 0 ) ,  the two equilbrium states consist of a pure fluid of A ( X  = 1 )  or of 
B ( X  = 0) and the reaction rate is 

0 = $ k f X ( l - X )  ( X - - t ) .  ( 5 )  
Thus, when K is smaller than f, the model may describe the equilibrium between 

two phases separated by a planar interface, the structure of which is described by the 
equation 

where t is the coordinate normal to the front. When the medium is a t  rest, there 
exists an equilibrium position for the interface which depends on the boundary 
conditions. The thickness 6 of the interface is of order 

6 %  (f), 

where k is the frequency factor of the reactive collisions. As in the Cahn & Hilliard 
theory, the diffusion coefficient D for the order parameter X determines a surface 
energy. As we shall see in more detail later, this phenomenon controls the diffusive 
part of the motion of wrinkled interfaces and is responsible for the stability of planar 
interfaces against accidental wrinkles produced by initial perturbations. It also 
produces shrinking of initial convex pockets of one species imbedded in the other. 

15 FLM I88 
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Notice that (2) derives from a Landau-Ginzburg potential : 

with 
aw 
ax ’ 

f = / / / { ~ D ( V X ) ~  + W ( x ) )  d3r, o = --. 

the first term in the bracket corresponds to an interfacial energy. 
Consider now a non-symmetrical case (representative of the generic case) : 

k i  > k;, kA = kB = 0 

(this last condition is used to simplify the presentation and could be replaced by a 
more general one). In this case the steady state X = X ,  = 1 is the most stable case, 
although X = X ,  = 0 is metastable because W ( X , )  < W ( X , ) .  Thus, (2 )  has a unique 
one-dimensional travelling-wave solution describing the replacement of particles B 
by A with a wave velocity U corresponding to a nonlinear eigenvalue, in the sense of 
Barrenblatt & Zeldovich (1972), of the following problem : 

d X  d2X 
U-- D -  = o ( x ) ,  

d5 dC2 I 
g = -  co 

When the imbalance is small, 
speed is 

with a thickness 6 x Di/ (k: ) i .  

( X = O ) ;  f ; = + c o  ( X =  1).j 

)k+,-k+,l 4 k i ,  the order of magnitude of the wave 

Dt(k+, - k&) 
(kf;); 

U X  

This problem also has a steady spherical solution 
corresponding to a droplet of the stable phase imbedded in the metastable one with 
a radius R of order RIS x k+,/(k+,-kk+,) corresponding to an interfacial energy 
balancing the difference of bulk energy of A and B. However, as in nucleation theory, 
this solution is proved to be unstable. It is also worthwhile recalling that the 
solutions of (86)  change in nature when the upstream medium is unstable. This is the 
case for the problem studied by Kolmogorov, Petrovskii & Piskunov (1938) 
(hereinafter denoted KPP) and by Fisher (1937) represented by the following 
reaction rate 

In this case, there is a half-infinite continuous spectrum of possible values for U ,  and 
the selected value is proved theoretically to be the lower bound, UKPp, given up 

= kX(1 - X ) ,  (9 )  

U K P P / ( D k ) i  = 2. (10)  

Here the selection mechanism is produced by the linearized production rate 
around the unstable state (Zeldovich 1948; Dee & Langer 1985). Such a wave can be 
observed only when fluctuations in the order parameter are absent from the unstable 
upstream medium. This is the case when the unstable upstream fluid is a lattice gas 
of pure species A and when the macroscopic reaction rate (9 )  is induced a t  the 
microscopic level by a single irreversibly reactive collision of an autocatalytic 
type : 

A + B Z B + B .  ( 1 1 )  



Simulat ion of f ree boundaries by lattice-gas models 445 

The implementation of these different models on lattice gases can be done by 
labelling the particles, as explained in the previous section, and by changing the 
binary label of the particles in triple collisions (kinetic scheme, (1) )  or double 
collisions (kinetic scheme, (1  1 ) )  following rules resulting in a straightforward manner 
from the kinetic scheme. The collision tables differ from the ones used in the 
preceding section only through the colour bits. Here the reactive collisions do not 
conserve the number of particles of a given colour. Except for the change of colour, 
the collision laws are the same as in the ordinary lattice gas. The total number of 
particles, momentum and kinetic energy are conserved in each collision by the 
hydrodynamic bits. The usual continuity and Navier-Stokes equations are valid in 
the hydrodynamic limit and are not coupled to the chemistry of colour change 
controlled by the colour bits. Moreover, since the label change takes place through 
interactions localized at  the vertices of the lattice, homogeneous equilibrium phases 
have no spatial correlations (perfect gas). Furthermore the mean mass fractions in 
the equilibrium states are given exactly by the roots of w .  Nevertheless, whenever 
the reverse reaction constants k- differ from zero, the equilibrium mass fractions 
have Poissonian fluctuations similar to  those of a perfect gas. If the kinetic 
coefficients k are considered to be independent of the local flow conditions, the 
reaction4iffusion equation (2) can be extended in a straightforward manner to the 
case of a non-zero velocity flow by replacing the partial derivative a/at by a 
Lagrangian derivative D/Dt : - -  

DX 
- = DAX+w(X) .  
D t  

Equation (12 a)  is valid in the hydrodynamic limit of small gradients, measured in 
mean-free-path units, and small reactive collision rates compared to the non-reactive 
collision rate. In  the limit of a characteristic flow length A ,  very large compared to 
the front thickness 6 (e x S / A  --f 0 ) ,  the local equation of evolution for a wrinkled 
equilibrium interface can be obtained from (12a) by using a multiscale analysis 
similar to the one presented by Clavin & Joulin (1983) for flames. For an equilibrium 
interface with a symmetric profile and constant reaction rate k (i.e. density 
independent), it can be shown that (see Appendix B) 

D U =- 
R ’  

which can be written in a dimensionless form as (see ( 6 b ) )  

s -- un I - t + O ( e 2 ) ,  where- = O(e). 
(kDp R R 

U ,  and R are the normal velocity of the front relative to the flow and the radius of 
curvature of the front respectively. The front propagates towards the particles 
localized in the concave part. At the dominant order so of this analysis, the effect 
associated with the non-zero thickness of the interface dispappears and the 
equilibrium interface can be considered to be a passive surface in the sense that it is 
only convected by the flow (U,  = 0). Curvature effects appear a t  the next order in the 
power expansion in e.  Notice that, contrary to the case for flames (Clavin & Joulin 
1983), at this first non-trivial order el in the e-expansion, stretching of the front by 
inhomogeneities in the flow field does not affect the motion of an equilibrium 
interface. This will no longer be true if the profile of the interface is asymmetrical as 

15-2 
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for the generic case ki += k&. In  this case an additional term appears on the right- 
hand side of (12 b)  which involves not only the diffusion coefficient D ,  as in equation 
(12b), but also the reaction rate (see Appendix B). This additional term is also 
present when the kinetic coefficients depend on the density. We will come back to 
this point in the following section. In  the absence of flow fields and for small 
amplitudes of front corrugations, ( 1 2 b )  reduces to a linear diffusion equation 
describing the relaxation of the front towards to a planar shape: 

aa 
at 
- = DAa, 

where g = a(q,c,  t )  is the equation for the position of the front in the frame of 
reference ( [ ,q ,  5) where the planar front is steady and perpendicular to the (-axis. 

However, if one wanted to describe reaction-diffusion phenomena in the absence 
of hydrodynamics, it  is not necessary to retain momentum conservation in the 
collision laws controlled by the hydrodynamic bits. Another possibility could be to 
introduce collisions with fixed targets (wind-tree model). In  the following we shall 
call these models without momentum conservation ‘lattice diffusive gas ’. 

A series of computer simulations of reaction-diffusion waves have been performed 
with the lattice-gas model presented above : 

(i) In  figure 3, a sequence of pictures is presented showing the development of a 
planar equilibrium interface from an intitial homogeneous mixture in a computer 
experiment of the spinodal type. The kinetic parameters are those represented by (5 ) .  
Every triple collision with particles of both colours is assumed to be reactive. This 
corresponds to a reaction rate, expressed in the natural units of the lattice gas, given 
by k+ = 15d2(1 -d )4 .  The density (mean number of particles per direction a t  each 
site) is d = 0.3. The initial condition corresponds to X = a and the particles are 
enclosed in a two-dimensional box with periodic boundary conditions. The number 
of sites along Ox and Oy are the same so that the aspect ratio is d$. 

A natural extension of the work presented in figure 3 concerns the mechanism of 
nucleation. It consists in describing the dynamics of the transition from a uniform 
metastable state to the thermodynamic equilibrium through a nucleation process. 
The procedure is similar, but the reaction constants in (3) must be chosen such that 
k+A + 126, kigB += 0 in such a way that there exist three different real roots of w in the 
range [0,1]. A slow reverse is necessary to ensure non-zero fluctuations of the order 
parameter X for the initial metastable state. Among the interesting features of the 
lattice gas model is the fact that similar numerical simulations of nucleation 
processes can be performed for flows in channels of arbitrary geometry without 
further difficulties. Among the main limitations of this simplified microscopic model 
is that the coupling between the kinetic constants k and the local thermodynamic 
conditions is only through p. Temperature fluctuations can be taken into account, in 
principle, by introducing different possible values for the modulus of the particle 
velocity. However such a procedure will limit the main interest of the method, which 
is in its characteristic of massive parallelism with a limited number of bits per site. 
It is easier to take into account the actual modification of local chemical equilibrium 
by pressure fluctuations. This can be done by prescribing a different sensitivity of the 
kinetic constants k+ and k- to the particle density. Before undertaking such a 
programme more simulations should be carried out to test the interest of the 
method. 

(ii) The variation of the thickness of the equilibrium interface for the kinetic 
parameters represented by ( 5 )  is shown in figure 4 ( a )  as a function of the inverse 
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FIGURE 4. (a)  Thickness of an equilibrium interface as a function of the square root of the inverse 
relaxation time; density = 0.3. (6) Thickness of an equilibrium interface as a function of the square 
root of the binary diffusion coefficient over the reaction rate. 

reaction rate for constant density, d = 0.3, and in figure 4 ( b )  as a function of diffusion 
coefficient over reaction rate. Each point of these curves corresponds to a different 
value of the reactive collision frequency controlling the coiour change of the colour 
bits associated with triple collisions. Equation (6b )  is found to be well verified. 

(iii) The equilibrium concentrations measured on both sides of equilibrium 
interface are plotted in figure 5 for the symmetrical case described by (4) and for 
d = 0.3. These concentrations are found to vary with K (the ratio of the direct and 
reverse reaction rates) as predicted by the theoretical values corresponding to the 
roots of (3). 

(iv) The propagation velocity of non-equilibrium planar fronts corresponding to  
situations described by (8a)  has also been measured. As shown by the results plotted 
in figure 6, the theoretical results of ( 8 c )  are well verified by the lattice-gas 
simulations. 

(v) A direct simulation of planar KPP travelling waves described by (9) and (10) 
has also been carried out. The implementation on the lattice gas has been done by 
introducing a rule for colour change through binary collisions according to  the kinetic 
scheme (1 1 ) .  Every binary collision involving two different-colour particles has been 
assumed to be reactive. This corresponds to a reaction rate, appearing in (9) and (lo),  
given by k = 6( 1 - d ) 5  d. The dependence of the wave speed on density thus obtained 
is plotted in figure 7. Agreement with (10) is found to be satisfactory only in the 
domain of high density. At !ow density the macroscopic equation (10) is no longer 
valid because the characteristic velocity 2(Dk)i becomes of the order of the velocity 
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of the particles on the lattice gas (called the ‘velocity of light’ and equal to one in 
the natural units of the lattice gas). A further possible reason for discrepancy lies in 
the role of fluctuations, which become important a t  low density when the thickness 
of the front approaches the mean free path. 

(vi) In order to check the dynamical properties of the equilibrium interface whose 
internal structure is described by (6a) ,  we have made the following computer 
simulation of a forced Rayleigh type of experiment. Initially, the interface is 
modulated sinusoidally in a quiescent flow and its relaxation towards the planar 
equilibrium shape is studied. As predicted by ( 1 2 d ) ,  the relaxation of the amplitude 
of modulation, shown in figure 8(a), is exponential in time with a relaxation rate 
given by 7-1 = Dk2, where 4 is the wavenumber and D the binary molecular diffusion 
coefficient of the mixture. The values of D measured in this computer simulation are 
presented in figure 8(b). They are slightly smaller than the binary diffusion coefficient 
measured in a non-reactive mixture and presented in figure 1 .  The accuracy could be 
improved by decreasing the reactive reaction rate k+ to a value small compared with 
the elastic collision rate. Another type of simulation has also been carried out 
concerning the regression speed of a circular ‘ bubble ’ of one species imbedded in the 
other. As shown in figure 8 ( c ) ,  equation (12  b)  is found to be well verified. The values 
of the diffusion coefficient D (figure 8b) are a little larger than obtained from the 
forced Rayleigh experiment and closer to the values obtained from the binary 
diffusion experiments (figure 1 b).  

The model considered above has a series limitation in describing the dynamical 
properties of real interfaces encountered in phase transitions developing in flows : the 
effects of latent-heat release are neglected. In  the following we shall deal with 
physical processes in which reaction4iffusion phenomena are coupled to thermal 
effects in the absence of fluid motion and which can be modelled by a ‘lattice diffusive 
gas’. For modelling many real physical problems such as crystal growth, the order 
parameter X obeys a reaction diffusion equation similar to ( 2 )  but coupled (through 
the temperature dependence of w )  to an equation for the temperature field T 
associated with energy conservation : 

de 
dt 

p- = AAt, 

where e ( X ,  T) is the enthalpy density and h the thermal conductivity. In  this frame, 
the rate w is the X-derivative of a thermodynamic potential W ,  depending on 
temperature through the coefficients kt;, B. Recent developments based on this model 
have been presented by Clavin (1987). At complete thermodynamic equilibrium 
between the two phases, the temperature is uniform such that ki = kz, leading to a 
steady planar interface (U = 0) as described by the solution of (5) and (6). 

One possible way of introducing a temperature field into the lattice diffusive gas 
could be to couple the coloured lattice-diffusive-gas model to another model 
describing a dynamical Ising spin system (Pomeau 1984). In  this model energy is 
conserved because spins are flipped only when they are in a zero local field. Thus to 
exchange energy between the spin assembly and the outside world it suffices to flip 
spins in a non-zero local field. Suppose for instance that one wants to bias the colour 
changing collisions in scheme (1) in such a way that particles A have a larger internal 
energy than particles B. Then one may put, on the same lattice, both moving 
particles and spins attached to the vertices. Choosing the internal energy difference 
between A and B to be exactly equal to that needed to flip a spin against the local 
field and correctly associating spin flipping and colour change, one may have 
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FIGURE 8. (a) The amplitude of an initially sinusoidal equilibrium interface as a function of time. 
( b )  Diffusion coefficient times density as a function of density for the experiments of (a) and (c). (c) 
Radius squared of a circular ‘bubble’ (two-dimensional) with an equilibrium interface, as a 
function of time. 

conservation of the total energy of the complete system (spin + lattice-gas particles). 
Thermal diffusion is ensured by the spin system with its own flipping rules, 
independent of particle transformation. The front motion is ensured by the 
‘chemistry of colours’ in the lattice gas as before. The coupling to the temperature 
field results from the bias in the reactive collisions that are permitted only if it  is 
possible to flip a spin attached a t  the corresponding site. The heat diffusion 
coefficient can be increased compared with the binary diffusion coefficient D by 
making many (sub)time steps for the spin system alone between time steps for 
particle collisions and colour dynamics. The infinite temperature limit is easily 
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understood in this representation: A and B are equally probable despite their 
difference of energy, and the bias in the colour change vanishes because spins parallel 
or antiparallel to their local field are also equally probable. 

Such a model could be a good candidate to describe dentritic growth. 

4. Non-miscible fluids and external gravity fields 
It would be useful to be able to model interfaces between two immiscible fluids. An 

interesting application of this is the study of interface instabilities such as 
Rayleigh-Taylor or Kelvin-Helmholtz instabilities. As explained in $ 1,  it is difficult 
to model complete immiscibility a t  the microscopic level, where it is necessary to 
introduce both attractive and repulsive forces. Attractive forces cannot be easily 
modelled in lattice gases. It is possible to imagine a collision table in which the rules 
concerning the colour bits are such that the interaction A-B appears to be more 
repulsive than the interactions A-A and B-B. However such an artifice does not 
seem to be sufficient to prevent diffusive mixing in a lattice gas. 

In  lattice-gas interface simulations one is therefore led to resort to a chemical 
transformation such as for the equilbrium interfaces that have been studied in $3, 
The problem is then to estimate the relative effect of the chemistry of colour change 
on the dynamics of such interfaces by comparison with the case of immiscible fluids. 
The two velocities to be compared are U,, the normal velocity of the front relative to 
the flow, and V ,  the flow velocity. Since the Schmidt number is close to unity in the 
ordinary lattice-gas model presented in $ 3, the phenomenon described by (12 b )  
produces an effect that is of the order of the inverse of the Reynolds number: 

Two other effects must also be considered: 
(i) The first one is of a general kinetic nature. It results from the fact that the 

conditions for thermodynamic equilibrium are not exactly satisfied because of flow 
inhomogeneities or because of the geometry of the front. As a result, Un =+ 0. 
Consider, for example, pressure fluctuations produced by inhomogeneities of the flow 
field. From the general principles of thermodynamics, the speed of transformation is 
proportional to the difference of chemical potential between the two phases. From 
the Gibbs-Duhem relation this is proportional to the pressure fluctuation. Assuming 
now that the flow satisfies the Bernouilli equations, one finds that the pressure 
fluctuation and thus the speed of transformation of one phase into the other is 
proportional to the square of the liquid velocity variation. But the velocity of this 
front, due to the convection by the flow field, is proportional to the fluid velocity 
itself. Thus the ratio of the two velocities, U J V ,  is of the order of the flow velocity 
itself. This dimensionless ratio can only be proportional to the Mach number. Thus 
for ordinary subsonic flows where the Mach number is negligibly small, real 
interfaces, such as the liquid-vapour interface, can be considered as non-sensitive to 
the effects considered above. Notice that, because the kinetic coefficients kt;, depend 
on the local density, the lattice-gas model of $ 3  will probably show similar effects. In 
fact, the density dependence being the same for k,  and k,, the motion of the 
corresponding interface is only sensitive to the effect of density change across the 
interface. This effect is obviously proportional to SIR and must also increase with 
the Mach number. Such effects should appear in the right-hand side of (12c) as an 
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additional corrective term similar to the one for flames but involving the Mach 
number (Clavin & Joulin 1983). 

(ii) The second effect is the modification of the local equilibrium conditions as 
described, for example, by the Gibbs-Thompson relation or the Laplace equation. 
These small effects may play a non-negligible role in the dynamics of real unstable 
interfaces such as in the Mullins and Sekerka instability for crystal growth or in the 
Rayleigh-Taylor instability. For example, they are responsible for stabilization a t  
short wavelengths. Such phenomena are not included in the simple lattice-gas model 
presented in $3. In  particular, the surface energy described by the first term on the 
right-hand side of (7 b)  is not coupled to the pressure as in the phenomena described 
by the Laplace equation. Nevertheless the stabilization a t  small wavelengths will be 
ensured by the phenomena described by (12 b, d ) .  

With this in mind, the equilibrium interface model presented in $ 3  has been used 
with the lattice-gas method to simulate the Rayleigh-Taylor (Rayleigh 1900 ; Taylor 
1950) and the Kelvin-Helmholtz instabilities for which hydrodynamics is an 
essential mechanism. Except when explicitly specified, all the simulations have been 
made with d = 0.3 and with every triple bicoloured collision taken to be reactive. 

For the Rayleigh-Taylor instability, the differential effect of gravity has been 
modelled by imposing that the particles belonging to one species have their 
momentum turned towards a given direction from time to time with a frequency 
proportional to the acceleration of gravity (Clavin et al. 1986). Because there is no 
difference in mass density, the effects associated with the difference in inertia are not 
represented. This effect of gravity is measured in dimensionless units by the ratio 
pghlp, where p is the pressure and h a typical lengthscale. In our computer 
experiments this number remains very small. Otherwise one would leave the range 
of incompressible dynamics. A closed two-dimensional square box (512 x 512 sites) 
has been used. A typical curve representing the amplitude growth with time for a 
particle simulation is shown as an example in figure 9 (a) .  The front is initially weakly 
wrinkled around its planar position with a wavelength equal to 4 the length of the 
box. Up to 1500 time steps the amplification is found to accurately fit the theoretically 
result given by the dominant order of the linear theory (Taylor 1950) : 

a(t) = a(0) cosh{(gR)ft}. (15)  

where R is the corresponding wavenumber. Later in time, the nonlinear effects cannot 
be neglected. A typical picture after 2000 iterations and for an initial wavelength of 
$ the length of the box is presented in figure 9 ( b ) .  The vectors represent the mass flux 
of one species. 

The Kelvin-Helmholtz instability has first been simulated for a configuration 
representative of a jet using a rectangular box (1024 x 256 sites) with periodic 
boundary conditions in both directions. Initially the velocities of the fluid in the 
middle and on the sides are opposed with the same modulus of $. The total flow field 
and the picture of the front with the mass flux of particles in the jet are presented 
in figure 10(a) after 2000 time steps. A time series of pictures of the front is shown 
in figure 10(b) .  As shown on figure 10(b)  (iii) the interaction between two interfaces 
leads to the formation of pockets of a single colour. These pockets then slowly regress 
and, because of the effect described by (12b) ,  all the particles will have the same 
colour in the final state. 

Such numerical simulations with the 14-bit lattice-gas model cannot be 
representive of real mixing layers because they correspond to situations in which the 
quantity g(p) defined in Appendix A is not unity. In  this case, a Gallilean invariant 
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FIGURE 9. ( a )  Amplitude of an initial sinusoidal perturbation, subject to a Rayleigh-Taylor 
instability, as a function of time. ( b )  Mass-flux vectors for one of the species in a Rayleigh-Taylor 
instability at time t = 2000. 

version (g(p) = 1 and dgldp = 0, see Appendix A) of the two-colour and reactive 
lattice gas must be used. As in the one-colour model presented by d’Humikres, 
Lallemand & Searby (l987), the Gallilean invariance can be ensured by using a two- 
bit word to represent the population of’the centres of a given colour and by biasing 
the non-reactive collision rules so that the mean density of the particles a t  rest is 
greater than that of the moving particles. 

The corresponding 16-bit reactive lattice gas with a densityllink of 0.16 and a 
densitylsite of 2.38 has been implemented on a computer to simulate the 
Kelvin-Helmholtz instabiliy for conditions similar to the ones that have been used in 
$ 2  but with an equilibrium interface separating the two types of particles. The 
kinematic shear viscosity is v x 0.23. The two opposed velocity vectors have the 
same modulus of 0.15 a t  the initial condition. A rectangular box (1024 x 256 sites) is 
used with stick conditions at the upper and lower boundaries and periodic conditions 
a t  the ends. The corresponding Reynolds number is Re x 334. Every triple collision 
with particles of both colours is assumed to be reactive so that the resulting thickness 
of the interface is of the order of the distance between neighbouring sites of the 
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FIGURE 10. (a) Jet  instability in a periodic channel, image taken at  time = 2000. (i) Total mass flux, 
(ii) mass flux in the jet. ( b )  Shape of the jet at (i) time = 500, (ii) 1500, (iii) 2500. 

lattice. A time series of pictures of the front is presented in figure 11 (a).  After 6000 
iterations the characteristic time for the evolution of the interface becomes much 
longer. This results from a quasi-equilibrium a t  that time between the local flow field 
and the normal velocity of the curved front given by (12b). The flow field 
corresponding to 6000 iterations is visualized in figure l l ( b )  in which a periodic 
system of identical vortices which rotate in same direction is identified. The time 
series of figure 11 (c )  show the evolution of the isoconcentration line X = $ for 
identical conditions except that  the chemical reaction is switched off so that, as in $2, 
molecular diffusion and turbulent mixing are the only mechanisms involved. By 
comparison with figure 11 (a) this isoconcentration line and the equilibrium interface 
are found to  have a similar shape up to 6000 iterations. 

Similar simulations but with an irreversible chemical reaction A + B + P can be 
used in future work to study the development of a chemical reaction in turbulent 
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shear flows, in particular in two-dimensional mixing layers or axisymmetric jets. 
This would require the use of eight additional bits to represent the third species P. 
Since the corresponding reaction-diffusion sheet will behave locally like the 
equilibrium interface, it must present a shape similar to the one in figure 11 ( a )  as long 
as enough reactive species A and B are left. Such an extension of the lattice gas is 
particularly convenient to investigate the phenomena occurring at the small 
dissipative scales of the turbulent mixing layer between two reactive fluids. 
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FIGURE 11. (a) Time series of the amplitude of an initial sinusoidal perturbation, subject to a 
Kelvin-Helmholtz instability. Mass fluxes of one species are shown with averaging over, 8 x 8 sites 
during 16 times steps. (b) Flow field at  time = 6000. Total mass fluxes are shown with averaging 
over 16 x 16 sites during 16 times steps. (c) Time series of a mixing layer corresponding to the same 
conditions as in (a )  but without the equilibrium interface. Mass fluxes of one species are plotted 
with the conditional sampling X 2 t. Same averaging as in ( a )  is used. 

A more simple extension would be to use the 16-bit lattice-gas model with a similar 
interface model but with ki $: k& in order to represent a reaction front, such as a 
premixed flame, propagating with a non-zero normal burning velocity (given by (8c)  
in the planar case) in a shear flow. Modifications of the burning rate by stretching and 
by wrinkling of the front will be well represented but such a simple model will be 
unable to describe the hydrodynamical effects associated with the difference of 
density. A model for a two-density flow is presented in the following section. 

5.  Flame fronts 
Flames present two major differences from the fronts studied so far. First, 

chemical processes involved in flames are always far from equilibrium and are not 
related to any phase coexistence at  thermodynamic equilibrium. Secondly, in the 
non-planar case, the isobaric coupling between thermal effects and hydrodynamics 
plays a dominant role notably through the Darrieus-Landau instability (G. Darrieus 
‘ Propagation d’un front de flamme ’, unpublished work presented a t  La Technique 
Moderne, 1938, and Le Congrek de Mkcanique AppliquBe, Paris 1945; Landau 1944). 
For a recent review see Clavin (1985). The flame front separates two gas flows of 
different mass density (p, > pb) and propagates in the frame of the unburnt mixture 
a t  a flame speed U ,  much smaller than the sound velocity C,  (small-Mach-number 
approximation, M = U / C  + 1). The subscripts u and b refer to unburnt and burnt 



458 P. Clavin, P. Lallemand, Y .  Pomeau and G. Searby 

mixtures respectively. In  the approximation M 4 1, the molecular density n is 
related to the temperature T through an isobaric approximation nu T, = nb Tb. I n  the 
frame of the flame front, the velocity components of the unburnt and burnt gas flows 
normal to the front, U ,  and U,, are related by the mass conservation equation, 

The purpose of this section is to present an extension to the lattice-gas model 
that could be used to simulate some typical problems of flames such as the 
Darrieus-Landau hydrodynamic instability, curved flame fronts propagating in 
tubes (Zeldovich et al. 1980; Peke 1985) or the coupling with acoustic phenomena. 

From the basic physics involved in flames a t  the molecular level, unburnt cold 
reactive species must be transformed irreversibly into burnt hot ones. Therefore the 
lattice-gas model must contain particles with two different kinetic energies a t  least. 
This necessitates the introduction of important modifications into the original 
isothermal lattice-gas model. The model proposed here contains two different sorts 
of particles : unburnt and burnt. The unburnt particles have a unit velocity modulus 
and a mass equal to two. The burnt ones have a unit mass and a velocity modulus 
equal to two. Thus the modulus of the momentum is the same for all the particles but 
the burnt ones have a kinetic energy two times larger than the unburnt ones, and as 
a consequence the temperature ratio T,/T, is equal to  two and the mass density ratio 
pu/pb is equal to four. The two kinds of particles move on the same hexagonal lattice 
and the collision laws between identical particles are the same as those in the original 
isothermal one-species lattice-gas model. Since the two species have the same value 
for the modulus of the momentum, the laws for elastic collisions involving burnt and 
unburnt particles are also the same as the original collision laws. These collisions are 
necessary to equalize the pressure of the burnt and unburnt mixtures so that the 
molecular and mass density ratios are two and four respectively. The exothermal 
irreversible chemical reaction is modelled by the splitting of a single unburnt 
particle into two burnt ones, compatible with momentum conservation. The thermal 
feedback can be represented by an autocatalytic process similar to the one described 
above: the splitting reaction is conditioned by the presence of a sufficiently large 
proportion of burnt neighbouring particles (multiple collisions). To minimize 
compressibility effects associated with the finite Mach number and also to smooth 
out the spurious transient increase in molecular density produced locally by each 
splitting reaction, one must decrease the splitting rate sufficiently compared with the 
elastic collision rate. The flame thickness 6 is thus necessarily much larger than the 
mean free path, as in real flames. In  practice this means that simulations of 
cases corresponding to very large Reynolds numbers, Re x L/S, make very heavy 
demands on computer memory and execution time. In  the lattice-gas model with two 
velocity moduli, the thermal diffusivity is identical with the binary molecular 
diffusion coefficient and thus the Lewis number is unity. 

Much work remains to be done to determine theoretically the correct macroscopic 
equations corresponding to this lattice-gas model. But the preliminary simulations 
are very encouraging. In  particular, in simulations of unsteady flame propagation in 
a closed vessel, the generation of acoustic and shock waves propagating back and 
forth has been clearly exhibited. The transition to detonation has also been observed. 
Flame propagation in an open channel (1024 x 256 sites) with periodic conditions a t  
the sidewalls has also been simulated. In  these conditions the appearance of cellular 
flames created by the hydrodynamic instability has been observed and is presented 
in figure 12. The initial condition is a planar flame and the uniform flow velocity of 
the reactant is adjusted to be the same as the flame speed in order to keep the 
position of the flame front stationary (figure 12a). After 1200 times steps, strongly 

Pu uu = Pb 'b. 
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FIGURE 12. Propagation of a premixed flame with heat release, showing the Darrieus-Landau 
instability. The lines are isoconcentration contours. The unburnt species enter at the bottom. (a) 
time = 100 (b )  1200. The marginally stable wavelength A ,  and the most unstable one A ,  evaluated 
from Clavin (1985) equations (52) and (78b) are also shown in this figure. The numerical values used 
in these equations are those corresponding t o  the conditions of this simulation : gas expansion 
coefficient y = 0.75, Lewis number Le = 1 ,  flame speed uL = 0.05 and thermal diffusivity D,, = 0.35. 
A ,  uL, and D,, are measured in the natural units of the lattice gas. 

nonlinear cells are clearly observed (figure 12 b).  The characteristic size of these cells 
is observed to be of the same order of magnitude as the marginally stable wavelength 
predicted by the theoretical analysis (PelcB & Clavin 1982; Clavin 1985). The 
isoconcentration lines of reactants are plotted in these figures. The Mach number 
(Mu x 10-l) of the flame modelled here by the lattice-gas method is not very small 
and the coupling with acoustic modes is strong when compared with real flames 
(Mu x One thus has to be careful when the developing of the above numerical 
simulations that compressibility effects, responsible for the interaction between 
flame and pressure waves, do not hide the hydrodynamic instability. 

6.  Conclusions and prospects 
It has been shown that the dynamics of a large variety of fronts in flows can be 

represented by an extension of lattice-gas , models with two different types of 
particles. This requires a number of bits per site of the order of twice that'of the 
initial model. This method presents the advantage of simplicity and flexibility of the 
software. Three-dimensional simulations are currently in process. At the present 
time, the CPU time is similar to that needed by the more classical numerical 
methods. The advent of special purpose computers based on cellular automata 
taking full advantage of the Boolean character of the particles as well as of the 
natural parallelism of the method will open new horizons. 

Much remains to be accomplished, especially in the theoretical analysis, to 
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improve the basic algorithms presented in this paper and more particularly in the 
representation of phase transitions and combustion phenomena. This method is 
presently limited to flows having moderate Reynolds and Mach numbers. Progress 
in this direction can be expected in the near future. This method cannot easily handle 
the complex chemistry occurring in combustion, but the basic propagation 
mechanisms as well as hydrodynamic and acoustic phenomena are well described and 
this new method could be very useful in the study of some important aspects of 
instabilities developing in industrial combustion chambers. Moreover this method 
appears also to be very convenient in the study of reactive mixing layers. 

We thank Bruno Denet for his help in the numerical simulations. This work was 
supported in part by E.E.C. contract no. ST2J-0029-F, D.R.E.T. contract no. 
86/1359 and C.N.R.S.-GRECO 70. 

Appendix A. Basic lattice-gas dynamics 
The lattice-gas model proposed by Frisch et al. (1986) involves Boolean particles 

located a t  the vertices of a regular hexagonal lattice of unit cell length. The particles 
have velocities ci of unit modulus and point in one of the 6 possible directions 
corresponding to the links between one node of the lattice and its six nearest 
neighbours. At each time step these particles ‘propagate ’ synchronously from vertex 
to vertex where they may undergo collisions with other particles. The Boolean model 
excludes the possibility of two particles occupying the same vertex with the same 
velocity, so the state of a vertex is completely described by six binary digits. The 
basic collision rules between the particles are given in figure 13 (a ,  b) .  d’Humi8res & 
Lallemand (1986) have shown that it is advantageous to introduce a seventh 
stationary particle (having an internal energy) that can be created or destroyed by 
the momentum-conserving collisons of figure 13 (c, d ) .  The presence of these 
stationary particles significantly increases momentum redistribution, reducing 
viscosity and increasing the maximum attainable Reynolds number for a given 
lattice. Define the macroscopic quantities 

7 

total density p = C ni, 
i=l 

7 

total flux pu = n,c,, 
i=l 

where ni represents one of the 7 possible particles at  a vertex. Note that the 
macroscopic p used in this Appendix is not the same as the microscopic density 
(d = p / 7 )  used in the body of the paper. It has been shown (Frisch et al. 1986; Rivet 
& Frisch 1986) that, with suitable limits, these macroscopic quantities satisfy the 
continuity equation 

% + V . ( p u )  at = 0, 

and a Navier-Stokes equation 
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FIGURE 13. Basic collision rules for a lattice gas conserving particle number and momentum. ( a )  
two-body collision ; ( b )  three-body collision ; ( c )  and (d )  creation and destruction of stationary 
particles. Further three-body collisions can be constructed from the two-body collisions plus a 
‘ spectator ’, four- and five-body collisions can be obtained by holeparticle inversion from the 
three- and two-body collisions respectively, leading to a total of 76 possible non-transparent 
collisions among the 2’ possible precollision states. 

where q,(p) and q,(p) are the shear and bulk viscosities respectively. The equation of 
state for the pressure is given by 

P = ; P  (A 5 )  

and in the natural units of the lattice gas the speed of sound is 

which is close to the maximum speed for the transfer of information on the lattice 
(‘ speed of light ’). 

It should be noted that the nonlinear convection term in the Navier-Stokes 
equation contains an unusual density-dependent factor : 

7 (7--2P) 
g(p) = -___ 12 ( 7 - p )  ’ 

which is not equal to unity. The standard Navier-Stokes equation can be obtained 
in the incompressible limit (g fp)  constant) by dividing (A 4) by g(p) and absorbing 
this factor in a non-homogeneous rescaling of time, pressure and viscosities. The 
effective Reynolds number is also rescaled : 

(A 8) 
UJP9(P) Re = ---, 

d’Humi8res et al. (1987) show that it is possible to obtain a lattice gas for which 
g(p) = 1 and ag(p)/ap = 0 a t  some particular density. This is done by using a two-bit 
word to represent the population of the stationary particles a t  a vertex and by 

71 
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biasing the collision rules for the creation and destruction of these particles so that 
the equilibrium population is greater than that of the moving particles. An extension 
to three-dimensional lattice gases has also been done (Clavin et al. 1986). 

Appendix B. 

interfaces whose structure is symmetrical. 

for the evolution of the mass fraction X yields (see (12a)) 

The purpose of this Appendix is to prove that (12b) is valid for equilibrium 

In the reference frame moving with the wrinkled front, the dimensionless equation 

where 

( 
ax aa a2x 

ax a7 ( ::)E ay ayaxay -+ m+- -+u--2--= 1 +  

is the reduced position of the front, and 

are the E- and 7-components of the dimensionless flow velocity, reduced by (Dk);. 
When the characteristic variation length of the flow is assumed to be large compared 
with the thickness of the interface, e = ( 8 / A )  is a small number. If u = O( l ) ,  w = O( 1) 
one may look for the solution in a power expansion with e as the small parameter : 

a = €-'ao(€y, €7) + a,(ey, €7) + O(€) 

x = X,(X,  ey, €7) + eX,(x, Ey, €7) + 0(€2). 
m = m,(ex, ~ y ,  €7) + em,(ex, ey, e ~ )  + O(e2) ,  

The following integral relation is obtained by an x-integration of (B 1 )  times 
ax lax  : 

Equation (B 7 )  is simpler for an equilibrium interface because the last term on the 
right-hand side is zero. 

At the dominant order c1 of the expansion, the solution of (B 1) is 
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with x, = x ( l  +@a0/ayl2)-i and where U, and X ,  are the solutions of ( 8 6 )  written 
in a dimensionless form. 

In  the case of an equilibrium interface, one has 

w ( X ) d X = O ~ U , = O ~ r n o = O * ( U n ) , = 0 .  (B 9) s 
If in addition w ( X )  is symmetrical around X = a, one has 

where the origin of the x-axis is choosen a t  the inflexion point of the X, profile. The 
first non-trivial-order term in the €-expansion of (B 1 )  and (B 7)  involves terms such 
as aX,/ar and aX,/ay which, according to (B 8), are proportional to xaX,/ax. 
According to (B lo) ,  the first and third terms on the left-hand side of (B 7) must 
vanish a t  this order in E .  For the same reason, those first-order terms in m, which 
include gradients of the flow velocity coming from the expansion of (B 5 ) ,  give a zero 
contribution to  (B 7) ,  which reduces to 

where the following relation has been used (see (B 8 ) :  

By noticing that sm,(x = 0) ( 1  + (aao/ay12}-i reduces to (Un),/(DL2)f, (B 9) and (B 12) 
yield the result of (12b ,  c) .  

When the X-profile is not symmetrical, (B 10) is not verified and an additional 
term n.Vu.n will appear on the right-haed side of (12b, c) (u and n are the flow 
velocity a t  the front and the unit vector normal to the front respectively), see Clavin 
& Joulin 1983. This term describes stretching of the front by inhomogeneities in the 
flow a t  the front. Notice that for dimensional reasons, such a term makes U ,  a 
function of the reaction rate k (through the thickness of the interface 6) and, not only 
of the binary diffusion coefficient D as in (12b) .  
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